Zaiyan Xu

Contact Information	Graduate Research Assistant Department of Electrical and Computer Engineering Texas A&M University	Email: zxu43@tamu.edu Webpage: https://www.zaiyanxu.com GitHub: https://github.com/zaiyan-x
Research Interests	Reinforcement Learning, Distributionally Robust Optimization, Reinforcement Learning from Human Feedback, Large Language Model (LLM) Alignment	
Education	Texas A&M University , College Station, TX Ph.D. in Computer Engineering Advisor: Dr. Dileep Kalathil	Aug. 2020 - Present Anticipated graduation 05/26 GPA: 3.86
	University of Illinois at Urbana-Champaign , IL B.S. in Statistics & Computer Science and Actuarial Sc Cum Laude, Highest Distinction in CS and Statistics, H	Aug. 2015 - Jul. 2020 cience GPA: 3.92 High Distinction in Actuarial Science
Honors and Achievements	 NeurIPS 2023 Top Reviewer Dept. of Electrical and Computer Engineering Graduate Merit Fellowship, TAMU, 2020 Willis Towers Watson Actuarial Science Scholarship, Dept. of Mathematics, UIUC, 2018 	
Work Experience	Mitsubishi Electric Research Laboratories, Cambridge, MA May. 2023 - An Research Intern (Host: Dr. Mouhacine Benosman) I worked on developing a distributionally robust reinforcement learning algorithm that als fies the the safety constraint. I proposed a Lyaponuv function-based method which chara cost functions which satisfy both safety and distributional robustness constraints.	
	National Center for Supercomputing Application, Undergraduate Researcher (NCSA SPIN Program) Worked on speech recognition and auto-captioning wi veloped several wrappers for CMU Sphinx engine and automating audio slicing, caption partitioning.	Champaign, IL Jun. 2019 - May 2020 th a focus on engineering lectures. De- d streamlined model training process by
Publications	 Distributionally Robust Large Language Model Finetuning <u>Zaiyan Xu</u>, Sushil Vemuri, Kishan Panaganti, Dileep Kalathil, Rahul Jain, Deepak Ramachandran. "Robust LLM alignment via distributionally robust direct preference optimization", submitted to NeurIPS 2025, arXiv preprint arXiv:2502.01930, 2025. [ArxiV link]. 	
	 Communication-efficient Federated Reinforcement Learning 2. Min Cheng, Ruida Zhou, Zaiyan Xu, Chao Tian, P. R. Kumar. "Communication Efficient Federated Natural Policy Gradient for Reinforcement Learning", to be submitted to NeurIPS. 	
	 Sample-efficient Robust Reinforcement Learning Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh. "Bridging Distributionally Robust Learning and Offline RL: An Approach to Mitigate Distribution Shift and Partial Data Coverage", accepted to the 7th Annual Learning for Dynamics & Control Conference (L4DC), 2025. [ArxiV link]. 	
	4. Zaiyan Xu*, Kishan Panaganti*, Dileep Kalathil. "I Distributionally Robust Reinforcement Learning", i Intelligence and Statistics (AISTATS), 2023. [Public	mproved Sample Complexity Bounds For in <i>International Conference on Artificial</i> cation link].
	 Robust Reinforcement Learning with Neural Netw 5. Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mo forcement Learning Using Offline Data", in <i>Thirty-Processing Systems (NeurIPS)</i>, 2022. [Publication II] 	Tork Function Approximation hammad Ghavamzadeh. "Robust Rein- sixth Conference on Neural Information ink].

Sample-efficient Distributionally Robust Imitation Learning

 Kishan Panaganti*, Zaiyan Xu*, Dileep Kalathil. "Distributionally Robust Behavioral Cloning for Robust Imitation Learning", in the 62nd IEEE Conference on Decision and Control (CDC), 2023. [Publication link].

Reinforcement Learning for Hardward Security

- Chen Chen, Rahul Kande, Zaiyan Xu, Mohamadreza Rostami, David Liu, Dileep Kalathil, Ahmad-Reza Sadeghi, Jeyavijayan Rajendran. "CBFuzz: Adaptive Processor Fuzzing Through Coverage-Aware Contextual Bandits", *submitted to USENIX Security '25*, 2025.
- (* denotes equal contribution)
- Skills Languages and Platforms: Python, C, C++, R, SQL, PyTorch, Ray, Huggingface TRL, Open-RLHF, Gymnasium, MuJoCo, CVXPY

Summary of
SelectedDistributionally Robust Large Language Model Finetuning2024-PresentSelected
ReserachI contributed to the development of two novel distributionally robust direct preference optimiza-
tion algorithms, Wasserstein DPO (WDPO) and Kullback-Leibler DPO (KLDPO), to address
preference distribution shift in LLM alignment. These methods leverage principled minimax
approaches with scalable gradient descent-style learning, ensuring robust performance under
shifting user preferences across diverse regions, demographics, and cultural trends. We provided
formal sample complexity guarantees and demonstrated substantial alignment improvements in
empirical experiments on LLaMA-3.2-1B and LLaMA-3.1-8B models.

Sample-efficient Robust Reinforcement Learning

2023

I contributed to the development of Robust Phased Value Learning (RPVL), a distributionally robust RL algorithm designed for tabular episodic learning and capable of handling mismatch between training and testing environments. Our method achieves an $\tilde{O}(|S||A|H^5)$ sample complexity—improving upon existing bounds by a factor of |S|—and supports multiple divergence-based uncertainty sets (including total variation, chi-square, KL, and Wasserstein).

Robust Reinforcement Learning with Neural Network Function Approximation 2022 I implemented a distributionally robust reinforcement learning algorithm to systematically handle uncertainties due to distributional shifts in the MDP transition model between training and testing environments. Designed a neural network architecture using PyTorch to explicitly encode the dual variables arising from the distributionally robust optimization formulation. This architecture was trained simultaneously with the robust Q-function, eliminating the need for external optimization solvers. Empirically validated the approach on MuJoCo benchmarks, demonstrating strong robustness and superior performance of the proposed Robust Fitted Q-Iteration (RFQI) algorithm.

Relevant	Introduction to Classical Analysis (MATH 615)	Analysis for Applications I (MATH 641)
Coursework	Probability for Statistics (STAT 614)	Applied Probability (MATH 619)
	Reinforcement Learning (ECEN 689)	High Dimensional Probability (MATH 689)
	Applied Convex Optimization (ECEN 629)	Stochastic Systems (ECEN 755)
	Real Variables I (MATH 607)	Advanced Stochastic Processes (STAT 621)
	Deep Learning (CSCE 636)	Asymptotic Statistics (STAT 620)
	Advanced Optimization Techniques and Analysi	s (ECEN 689)
Professional Services	Conference reviewer: ICLR (2024, 2025), NeurIPS (2023 Top Reviewer , 2024), ICML (2023 2024, 2025), AISTATS (2023, 2024), American Control Conference (2023), IEEE Conference or Decision and Control (2023, 2024, 2025), L4DC (2023, 2024, 2025)	
References	Dr. Dileep Kalathil Dept. of Electrical and Computer Engineering Texas A&M University, College Station, TX	

Email: dileep.kalathil@tamu.edu