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Motivation

Standard reinforcement learning (RL) algorithms often fail to perform well when the

training and testing environments are different (sim-to-real gap).

The framework of robust Markov decision process (RMDP) (Iyengar, 2005) is one of

the ways to address the issue. It characterizes an uncertainty set which is a collection

of models, in contrast to just one model in non-robust MDP. That is, the goal is to

find a distributionally robust solution against mismatches in distribution.

The sample complexity of non-robust MDP is well-studied already. There are

matching lower and upper bounds on sample complexity for learning an ε-optimal
policy. However, it remains an open question for robust MDP.

Goal

How many samples from the nominal model are required to learn an ϵ-optimal

robust policy with a high probability?

Previous works all used uniform covering number argument: covering the generic

value function class V = {V ∈ R|S| | 0 � V � H}.
Key Idea: We develop uncertainty-set-specific covering number because the

function class induced by dual reformulation of each uncertainty set turns out to

be less complex than the generic function class.

Main Contributions

We propose a new model-based DR-RL algorithm, RPVL, which takes advantage of

the non-stationary dynamics in each phase.

We provide the first-ever sample complexity result for the DR-RL problem with the

Wasserstein uncertainty set.

We demonstrate the performance of our RPVL algorithm on the Gambler’s Problem

for four different uncertainty sets.

Robust MDP Objective

Considering an RMDPM = (S, A, P , (rh)H
h=1, H), where the uncertainty set is defined

as P =
⊗

h,s,a∈[H ]×S×A Ph,s,a such that Ph,s,a = {P ∈ ∆(S) : D(P, P o
h,s,a) ≤ ρ}. We

seek to solve the following objective:

sup
π∈Π

inf
P∈P

V π,P
h , ∀h ∈ [H ],

where V π,P
h (s) := Eπ,P

[∑H
t=h rt(st, at) | sh = s, π

]
. Π is the policy class of all deter-

ministic Markovian policies.
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P is a collection of measures (models)! We want to find
the best policy under the worst model. Note that we

only have access to a generative model on the nominal

model P o.

Table: Comparison of Sample Complexity Results

Algorithm
Sample Complexity

TV chi-square Kullback-Leibler Wasserstein

(Yang et al., 2021)
|S|2|A|H5

ρ2ε2
(1+ρ)2|S|2|A|H5

(
√

1+ρ−1)2ε2 -
|S|2|A|H5

ρ2p2ε2 -

(Zhou et al., 2021) - -
exp O(H)|S|2|A|H5

ρ2ε2 - -

(Panaganti and Kalathil, 2022)
|S|2|A|H5

ε2
ρ|S|2|A|H5

ε2
exp O(H)|S|2|A|H5

ρ2ε2 - -

This work
|S||A|H5

ε2
(1+ρ)2|S||A|H5

(
√

1+ρ−1)2ε2
exp O(H)|S||A|H5

ρ2ε2
|S||A|H5

ρ2p2ε2
(Bp+ρp)2|S||A|H5

ρ2pε2

(Non-robust) Lower bound

(Li et al., 2020) |S||A|H4/ε2

Theorem: Consider a finite-horizon RMDP. Let the uncertainty set be defined as one of the four distances considered in this work. Fix δ ∈ (0, 1), ρ > 0, and ε ∈ (0, H).
Consider the RPVL algorithm, with the total number of samples greater than or equal to the ones specified in the row of “This work” in the table above, then we have the

PAC guarantee: ‖V ∗ − V π̂‖∞ ≤ ε with probability at least 1 − δ.

Algorithm: Robust Phased Value Learning (RPVL)

RPVL is a model-based algorithm. For each step (phase) h ∈ [H ], we use the
generative model to generate N transitions for each state-action pairs (s, a) ∈ S × A.
Let Nh(s, a, s′) be the count of the state s′ in the N total transitions from the state-

action pair (s, a) in step h ∈ [H ]. We then construct the maximum likelihood estimate
of the nominal model as P̂ o

h,s,a(s′) = Nh(s, a, s′)/N .

Algorithm 1 Robust Phased Value Learning (RPVL)

1: Input: Uncertainty radius ρ
2: Initialize: V̂H+1 = 0
3: for h = H, . . . , 1 do

4: Compute the empirical uncertainty set P̂h,s,a = {P ∈ ∆(S) : D(P, P̂ o
h,s,a) ≤ ρ}

5: V̂h(s) = maxa(r(s, a) + LP̂h,s,a
V̂h+1), ∀s ∈ S

6: π̂h(s) = arg maxa(r(s, a) + LP̂h,s,a
V̂h+1), ∀s ∈ S

7: end for

8: Output: π̂ = (π̂h)H
h=1

The Covering Trick - Total Variation Case

The operator LPTV
h,s,aV

= inf{PV : P ∈ PTV
h,s,a} is a difficult optimization problem. Using

dual reformulation, we have the following equivalent form

LPTV
h,s,a

V = − inf
η∈[0,2H/ρ]

Es′∼P o
h(·|s,a) [(η − V (s′))+] +

(
η − inf

s′′∈S
V (s′′)

)
+

· ρ − η.

Note that in the dual reformulation, the expectation is only with respect to the nominal

model P o. With this, we discover that, in order to bound the error from using empirical

uncertainty set |LPTV
h,s,aV

− LP̂TV
h,s,aV

|, we only need to cover the function class UV =
{(η · 1 − V )+ : η ∈ [0, H ]}, rather than all possible value functions.

Simulations
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The left plot shows the rate of convergence with respect to the number of sample

N . The middle plot shows the level of robustness of Wasserstein robust policies in
testing environments with perturbed model parameter ph. The right plot shows how

sub-optimality gap changes with respect to the robustness parameter ρ.
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